Making an “ordinary” O2 3G data SIM work in an iPad without a tariff change

The history of my various mobile telcommuncations contracts is a long one, so I’ll spare readers the details but after my recent customer service debacle with Three, I’ve cut them loose (they tried to offer me an iPad 2 for “free” to stay with them… the sort of “free” that involves a 2 year contract… no thanks…).

I planned to use an O2 SIM that was already activated for mobile data in my iPad so I cut it down to micro SIM size, using a cutter that I bought on the ‘net for a few pounds. After booting the iPad with the new SIM, it found the O2 network but told me that I didn’t have a data contract and gave me a number to call O2, and a reference to quote (the identifier for my SIM).

O2 told me that it would require a tariff change and that iPad data is different to mobile broadband. I’m sure they meant that it’s billed differently, rather than that it’s different in any other way (special Apple “iTCP/IP” or “iHTTPS”?) but Tim Biller (@Timbo_Baggins) suggested I look at the Access Point Name (APN) settings.

It took a while to find the right ones – googling for APN O2 iPad told me to change from ibrowse.o2.co.uk (username/password: browse/password) to idata.o2.co.uk (username/password: vertigo/password) but they didn’t work. I needed to think of this the other way around: my SIM works in a 3G dongle so I googled APN O2 dongle and found an extensive list of APNs for UK mobile network providers. Changing the APN in my iPad to mobile.o2.co.uk (username/password: web/web) did the trick, as tested by browsing the ‘net (albeit only GPRS where I live) with Wi-Fi turned off.

The advantage of this approach is that the same SIM now works in my iPad or in my dongle (using an adapter) allowing 3G data access from either device, on the same bill, but only one at a time (that’s fine).

Next step is to switch my phone over from O2 (£16.50 a month including 500MB data) to Giffgaff (£10 a month with unlimited data, same network…). I already have the SIM, just waiting to get Christmas out of the way before I try to transfer my phone number!

[Update 16 January 2012: Some time over the last few days, this stopped working for me. The SIM is still active and works in my 3G dongle, but I guess O2 have made some changes in the network that stop this simple APN change from working with an iPad – madness, as my iPad must place less load on the network than a dongle with a Windows PC, albeit more than a smartphone would…]

What exactly is a 4G mobile data network?

I’m not a telecoms expert but, every now and again, new technologies come along that cross over into my world. One of those is the evolution of mobile telecommunications networks and there’s a lot of talk right now about “4G”. So what is it all about? Well, I’m sure there are a lot of detailed technical references available on the ‘net but I recently heard Ben Roome from Nokia-Siemens Networks being interviewed on the Guardian Tech Weekly podcast and he gave a quick overview, which I’ve reproduced here:

  • First generation mobile networks were analogue – that is to say that the signal could vary, a bit like tuning in to get a (broadcast) radio signal.
  • Second generation (2G) networks came on stream in the 1990s and used digital signals for communication.
  • There were various “interim” generations (2.5G for example) to try and squeeze more data over networks but the advent of 3G allowed mobile broadband data access, although many 3G handsets still use 2G for voice communications (modern radio networks can handle 2G, 3G and 4G using the same hardware – all that is required is a software update).
  • There are different standards for each generation of network, and 4G networks use LTE (Long Term Evolution) or WiMax (since the ITU relaxed standards to allow other technologies than LTE Advanced as LTE was not originally considered a fourth generation network technology but is now regarded as a sufficient improvement over 3G to be called 4G). To achieve duplex transmissions (i.e. send and receive at the same time) channels may be divided by time or spectrum (frequency) – WiMax uses time division (as do some LTE variants) and was effectively an interim 4G technology that was good for fixed wireless access (i.e. wireless connections, to a fixed location, cf. mobile networks). 4G networks have the potential to offer big improvements in latency (round trip speed between asking for something and getting a response delivered) but high speeds also need a high speed backhaul between cell towers (i.e. the core network). Most backhaul is microwave, but the core architecture does makes a difference and LTE networks are “flatter” (all IP from handset to cloud and back again) so they have simpler routes and improved management (hence improved latency).

Commercial 4G networks are in operation in Germany, with trials in UK. Broadband is a huge driver of economies and society so coverage requirements may be greater (i.e. 98% in place of 95%) when the UK governement auctions the radio spectrum next May as 4G is a technology that can genuinely offer universal access. The UK 4G trial in Cornwall is intended to see if 4G offers an alternative to fixed line broadband. Fixed lines currently averages 6.4Mbps, with 3G offering 1.6Mpbs – so the question is “can 4G beat offerings and offer a solution for people in areas with poor copper infrastructure.

Whilst the increased coverage requirements may mean that less money is raised by the spectrum auction, Ben Roome commented that those countries who are leading the world in this area make the most of the infrastructure with “beauty contests” for spectrum rather than charging. The UK has gone down the charging route – hopefully that doesn’t mean that we’ll all have to pay too much in years to come for something that people really value.